
What Can N-Grams Learn for Malware Detection?

Richard Zak and Edward Raff
Laboratory for Physical Sciences

Booz Allen Hamilton
{rzak,edraff}@lps.umd.edu

Charles Nicholas
University of Maryland, Baltimore County

nicholas@umbc.edu

Abstract

Recent work has shown that byte n-grams learn mostly
low entropy features, such as function imports and strings,
which has brought into question whether byte n-grams can
learn information corresponding to higher entropy levels,
such as binary code. We investigate that hypothesis in this
work by performing byte n-gram analysis on only specific
sub-sections of the binary file, and compare to results ob-
tained by n-gram analysis on assembly code generated from
disassembled binaries. We do this by leveraging the change
in model performance and ensembles to glean insights about
the data. In doing so we discover that byte n-grams can
learn from the code regions, but do not necessarily learn any
new information. We also discover that assembly n-grams
may not be as effective as previously thought and that disam-
biguating instructions by their binary opcode, an approach
not previously used for malware detection, is critical for
model generalization.

1. Introduction

Malware detection is a growing problem due to the
amount of new malware each year, which is increasing at
an exponential rate. Current anti-virus (AV) technology is
based on signatures, which are intrinsically specific to the
malware for which they are written. Thus they will not recog-
nize new malware that has not yet been seen, and likely miss
known malware that has been slightly tweaked to avoid AV
detection. To address this shortcoming, many have looked at
applying machine learning algorithms to the task.

The focus of this work is to investigate the performance
of one of the simpler machine learning approaches, n-grams.
N-grams have been popular for malware detection, used with
both byte [e.g., 1]–[3] and assembly [e.g., 4]–[6] features,
with some works even using both in a single system [7]. Both
byte and assembly n-grams can be extracted purely through
static analysis, thereby avoiding many possible environmen-
tal pitfalls with dynamic analysis and overfitting [8]. Using

static features can be desirable, as it makes the system as a
whole simpler and faster, but it also increases the breadth of
possible effective obfuscation techniques.

Despite widespread use of byte n-grams, recent work has
called into question how effective the technique truly is [9].
Due to overfitting by using binaries from just Microsoft
Windows installations, many prior works appear to overfit by
learning to separate “Microsoft vs Other” instead of “Benign
vs Malicious”. In particular, Raff et al. [9] question whether
byte n-grams could learn beyond the ASCII string and header
content of a binary. We evaluate this hypothesis in this
work by performing byte n-gramming on different regions of
Microsoft Portable Executable (PE) binaries that correspond
to different types of content. In particular, we consider the
question of whether byte n-grams could learn from the code
sections of a binary. For this reason we also evaluate and
compare the accuracy of these models against ones created
from assembly n-grams.

The contributions of our work are two results that help
to further our understanding of what types of information
byte and assembly n-grams can learn. First, we provide evi-
dence that byte n-grams are able to learn from the code sec-
tions of a binary, contrary to the hypothesis. However, the
information learned from the assembly regions seems to be
highly correlated with that of the import and header sections
of PE binaries, suggesting the actual amount of information
learned about the assembly instructions may be limited. Sec-
ond, we note that the discriminative ability of assembly n-
grams is less than that of byte n-grams from the code section.
By using multiple datasets that do not share common biases,
we observe that assembly n-grams seem to suffer from se-
vere overfitting, by being unable to generalize past data sim-
ilar to the training distribution. This suggests that the disas-
sembly process and n-gramming strategies commonly used
may be losing important discriminative information, and not
learning what was previously thought.

The remainder of this paper is organized as follows. In
section 2 we review relevant related work. Next we give an
overview of the byte n-gram approach in section 3, and de-
tail which sub-regions we use and how we extracted them. In

section 4 we will discuss the different ways in which assem-
bly n-grams may be extracted, and introduce an additional
novel representation. In section 5 we will review the classifi-
cation algorithms that will be used in this work and training
and parameter tuning procedures. The evaluation methodol-
ogy and results will be presented in section 6, followed by a
discussion of those results and conclusions in section 7 and
section 8 respectively.

2. Related Work

Many works have looked at the use of byte n-grams for
malware detection, and were considered in the first work on
Microsoft Windows malware detection Schultz et al. [10].
One of the most thorough previous investigations of byte n-
grams was done by Kolter and Maloof [2], who evaluated
several different linear and non-linear classification and fea-
ture selection algorithms to use with byte n-grams. A num-
ber of works follow the same general approach of Kolter and
Maloof when using byte n-grams: pick a feature selection
method similar to Information Gain on 4 or 6-grams, fol-
lowed by a non-linear classifier [11]–[13]. Work by Raff et
al. [9] sought to explore this feature type more deeply, and
discovered evidence that prior results were overfitting. We
use the model building strategy suggested in their work in
ours, using byte 6-grams and elastic-net regularization to
perform implicit feature selection with a linear model.

This same general strategy has also been used for assem-
bly (and opcode) based classification. In the static analysis
case, the binary is disassembled using some tool, such as
IDA Pro, and the extracted assembly features are used to cre-
ate n-grams. It is often the case that creating n-grams from a
whole instruction (with its arguments) is not efficient, and so
a number of variants have been used in practice, which we
discuss more in section 4. This basic strategy is similar to
the byte n-gram approach but at a higher level of represen-
tation, and has been popular in practice [14]. Also popular
for assembly instructions is to use Hidden Markov Models
(HMMs) [15], [16]. The Markov assumption is that one item
in a sequence can be predicted with information from only
the previous m items. Thus a HMM approach of the mth or-
der has many functional similarities to the n-gram approach
explored in this work.

There have been a few works attempting to combine as-
sembly n-grams with byte n-grams and other feature types.
These works have all focused on building a system with
higher accuracy, where in our work our goal is to determine
what kinds of information are being learned or used. Ma-
sud et al. combined these with function imports into one
larger feature set, and found it to perform better than binary
of assembly features independently. On one of their datasets,
they report accuracies of 96.5%, 94.6% 87.1% when using
the combined features, byte, and assembly features respec-

tively. They obtained similar performance for both boosted
decision trees and Support Vector Machines. Masud et al. ’s
work is similar to our own in combining features of different
types, though it differs in method and reasoning. No analysis
was given in their work to determine which type of feature
had more or less impact on the improved performance. Simi-
larly, Menahem et al. [18] combined a wider array of feature
types and classification algorithms into one larger ensem-
ble to maximize performance, but did not attempt to investi-
gate which features contributed in which ways. Though not
combining feature types, Yan et al. [19] also looked at both
byte and assembly n-grams for malware detection. They per-
formed a wide search over feature selection and classifica-
tion methods to determine which configuration worked best,
but used only 300 binaries for their experiments.

The aforementioned works all used static analysis, as we
do in this work. It is also possible to obtain assembly in-
structions via dynamic analysis, which has been popular as
well. More closely related to our work, Damodaran et al.
[16] looked at using assembly instructions to train Hidden
Markov Models (HMMs) from both static and dynamic anal-
ysis (among other approaches as well). While they did not
perform the same type of malware detection, they found dy-
namic analysis could increase the detection effectiveness, as
measured by Area Under the Curve (AUC), by as much as
20 percentage points. They also found that dynamic analysis
reduced the number of distinct opcodes observed, which re-
duces the training time and indicates that many instructions
present in a static analysis may not be relevant to functional-
ity.

In conducting the literature review for this work, we did
not find any previous malware detection work that uses data
similar to Group B (i.e., production data from a corporation)
and uses static assembly features[20]–[23]. This is impor-
tant, as most works use benign data from Microsoft Win-
dows installations, which can result in overfitting to the con-
cept of “Microsoft vs not-Microsoft”. We believe the overfit-
ting that occurs when using Microsoft binaries for training
and testing may be the root of positive results with assembly-
grams for malware detection that have been previously re-
ported. This gives us some optimism that the issues we dis-
cover is not a problem with our data, but that a weakness
with assembly-gram features was not published due to a bias
against negative results [24], [25]. The lack of publicly avail-
able, high quality, datasets for this task will be a hindrance
toward reaching a consensus on this issue.

3. Sectional Byte N-Gram Features

The primary effort of this work looks at byte n-grams and
what types of information can be learned from them. To in-
vestigate this, we perform byte n-gramming on sub-sections
of the PE file that correspond to different regions and thus

types of data. The PE format specifies a variety of different
sections types for storing information needed for the program
to execute. Some typical sections found in many PE files are:
.text for the section of an EXE that contains executable
code, .data data for initialized variables, .rodata data
for read-only variables, and .idata for the import table.

However, the name for any given section is arbitrary and
does not impact how a section is loaded or used. Some com-
pilers put the executable code in a .code section instead of
the traditional .text. This makes the section name an unre-
liable method of determining type. Instead, one can use the
information encoded in each section to more accurately deter-
mine a section’s purpose. Each section has a number of flag
bits which indicate properties of the section, particularly if it
is: (1) Executable, (2) Read-only, or (3) Read-write. Newer
versions of Windows don’t allow a section that is marked
executable to be also marked as read-write. To separate out
the executable section, all that is needed is to find sections
marked as executable. Most files have just one such section,
although some have two or more. In the case of UPX-packed
binaries, the executable sections are .UPX0 and .UPX1. Us-
ing these section flags, and the other fields of the PE header,
we perform byte n-gramming on four high level section types:
PE-Header, data, imports, and executable code. We obtain
the bytes for these four sections in the following manner.

For the parsing of the PE files, we use the PortEx library
[26] to discover all sections and the section offsets in the raw
file. This library was also used to process the section bit flags
needed for the other portions of this work. Once identified,
we concatenated all the bytes associated with the PE-Header
into one longer sequence. This sequence was then used as
the PE-Header feature source for byte n-grams. It generally
corresponds to low-entropy information, but is encoded in
variable length fields (some fields are single bits, some are
multi-bit flags, and some are integers varying between 4 and
64 bits in length). This makes it a good match for byte n-
grams in terms of being low entropy, but a poor match in
terms of the variable length nature with respect to the fixed
size n for n-gramming.

For the executable sections of a binary, we checked every
section within the binary for whether or not its executable
bit was set. All sections found with such a property were
concatenated together. For most files there was only one sec-
tion marked executable. This corresponds to the theoretical
worst case for byte n-grams. The contents of the executable
regions are higher entropy, and the encoding of x86 instruc-
tions is variable length. Our expectation is that this section
will have the worst performance.

The remaining two region types we are interested in are
imports and data. In general, the vast majority of sections
that were not marked executable corresponded to either a
data section or an import section. For benign applications,
it is usually easy to separate the two, as the PE-Header will

point to the section in which imports are stored. This was
not true in all cases for goodware though, and was rarely true
for malware. For example, many samples had the import
table address point to an address beyond the file size, to areas
partway into an existing section, or areas that did not appear
to contain any imports at all after manual inspection. If the
import table address was present, the address was used as
an offset into the section. From the offset to the end of the
section was treated as the import table.

To remedy the situation when the import table offset
wasn’t valid, we used rudimentary string matching to detect
regions of the binary that appeared to be containing import
information. This was done by comparing the byte content
with frequent DLL and function names, and deciding that
these sections are import sections. This approach success-
fully extracted 90% of the imports from the non-executable
data, which was verified by manual inspection of randomly
selected binaries.

Finally, after identifying the byte sequences correspond-
ing to the PE-Header, executable, and import sections of a
binary, all other sections were assumed to be data sections.
This gives us all four regions of interest for our experiments.
We note that these extractions are not perfect, but are more
than accurate enough to allow for informative experiments.

4. Assembly N-Gram Features

Before creating n-grams of assembly instructions, we
must first select a subset of base n-gram representations to
choose from. In assembly code, each line is generally repre-
sented by the instruction name and a number of parameters
for the instruction. Just as n-grams are a sliding window of
consecutive bytes, we define n-grams of assembly as a slid-
ing window of lines of assembly code. A number of options
have been proposed, which we will review below.

The relationship between byte and assembly n-grams has
been noted before [14], [17]. An important consideration not
widely discussed is that not all instructions with the same
name map to the same binary opcode1. To illustrate, the
cmp instruction’s binary opcode can begin with 0x3C, 0x3D,
0x3A, 0x3B, 0x80, 0x81, 0x83, 0x38, or 0x39, depending
on the arguments given. In this and all previous works in
malware detection known to us, these are all treated as the
same instruction based on the common cmp name. We will
refer to distinguishing instructions based on their binary
opcode as disambiguation. Little work has been done with
such disambiguated opcodes in related tasks of malware
family classification[27] and function identification[28], but
neither work quantifies the importance or significance of
using opcodes. We perform the first such comparison to

1Some works have used the term “opcode” to describe the instruction
name, such as cmp. We avoid this terminology, and instead use “opcode”
only to refer to the binary encoding of the instruction.

determine the impact of disambiguation assembly n-grams
in subsection 6.3, where we will show their impact is critical
to obtaining generalizable results.

4.1. Instruction Only

The simplest approach is to capture only the instruc-
tion used as the base. If encountering the instruction
mov eax, 4 we simply reduce it to mov. This approach
is used by Shabtai et al. [14]. They argue that this represen-
tation will generalize better, as small perturbations in the ar-
guments (due to a change in location) can be functionally
equivalent, but no longer found by an n-gram. For brevity,
we will refer to this form of assembly n-grams as “OI” for
“Only Instructions”.

4.2. Instructions with Parameter Type

This method was used by Masud et al. [17], and generally
appears to be a common preference [29], [30]. They noted
that an instruction will have some number of parameters
and each parameter is coalesced into a location type, either
memory, register, or constant corresponding to where the
parameter came from: either an access to memory, directly
from a register, or the immediate value from the call to
an instruction. For example, the instruction mov eax, 4
would be coalesced to mov.register.constant and
mov [eax], 4 to mov.memory.constant. We note
that in this form it does not matter that a register was used
in the first parameter, it is that the parameter came from a
memory accesses that determines the type. We will refer to
this form of assembly n-grams as “IPT” for “Instructions
with Parameter Type”.

4.3. Instructions with Function Resolution

Many works have noted that the APIs called also have
predictive power [17], [31], and we have found that byte n-
grams tend to pick up on these features as well[9]. Inspired
by these observations, we developed a novel feature represen-
tation of assembly where all matching constants are replaced
with the function name being called, when available from the
import table. All other operands are left in their raw form,
and we attempt to match exact instruction sequences, with
numerical constants replaced by the function name when a
match is detected. This is a more viable alternative to us-
ing the raw pointer values, as the pointer to a function may
change from one binary to the next, even if calling the same
function. Our shorthand for this type of assembly n-gram
will be “IFR” for “Instructions with Function Resolution”.
Doing so allows us to perform tests using as much of the
raw disassembly as possible, and reducing many instructions

to a canonical form. These instructions sequences are logi-
cally equivalent between binaries, but would not have been
matched correctly if the addresses were not resolved.

call 0x401040 ; address not found in import table
call 'MSVCRT.dll:sprintf' ; direct call
mov edi, 'KERNEL32.dll:GetPrivateProfileStringA'

; indirect call to function, first loaded↪→

call edi ; then called via register later

Figure 1. Excerpt of our diassembly with function resolution,
extraneous instructions removed for brevity.

5. Machine Learning Models

Now that we have reviewed the features that will be used
in this work, we will discuss the primary models that we
will apply. First, we present our primary classification model
which performs feature selection as part of the model con-
struction process. Second, we present the ensemble method
we will use to combine models for our byte n-gram results.
Creating ensembles is a common method in machine learn-
ing to produce a more accurate model by exploiting the un-
correlated errors made by members of the ensemble [32],
[33].

5.1. Elastic-Net Regularized Logistic Re-
gression

Keeping our results consistent with [9], we use elastic-net
regularized logistic regression [34] for most of our experi-
ments. The objective function of this regression is given in
equation (1). The ||w||1 term of (1) gives the model the prop-
erty of performing feature selection automatically as part of
the optimal solution. This allows us to consider many differ-
ent feature set sizes in a computationally efficient process.

f(w) =
1

2
||w||1+

1

4
||w||22+C

N∑
i=1

log(1+exp(−y ·wTxi))

(1)
The value C in the loss function is the regularization param-
eter. Larger values of C decrease the strength of the regular-
ization; as C →∞, (1) approaches the behavior of standard
Logistic Regression. Smaller values of C reduce the effec-
tive degrees of freedom of the model, and force coefficients
of w to become zero.

An important property of the elastic-net regularizer is ro-
bustness to the curse of dimensionality and irrelevant fea-
tures[35]. The nature of using n-grams is such that, as n in-
creases, the number of unique possible features grows expo-
nentially. Even if all new features provided no information,

they can have a significant negative impact on model perfor-
mance. Using this elastic-net model allows us to reduce this
impact.

5.2. Stacking

Given that we want to understand if the information being
learned in each section is different, or some variant of the
same information, we also apply the Stacking ensemble
technique [36] to combine the models from all four byte
regions. When performing Stacking, we have a set of base
classifiers that make the ensemble, which are all trained
independently. The predictions of these classifiers are then
used to create a new feature set, of dimension equal to the
number of base models used. Any other classifier can be
used as the combiner, which uses this new feature set to
learn the same problem. The combiner model can be as
simple or complex as desired. It is common to use a linear
model for the combiner, in which case stacking learns what
is essentially a weighted average vote of the constituent base
classifiers.

Stacking is often an effective method to increase the pre-
dictive performance for a problem, at the cost of using mul-
tiple models (and thus more memory and compute time).
Though the connection to stacking was not made, the strat-
egy has been applied to malware detection before [37]. Like
most ensemble methods, it relies on the base classifiers hav-
ing some degree of variation and performs best if their errors
are uncorrelated. We tested this with a number of combiners,
including Random Forests (RF) [38], Linear Support Vector
Machines (SVM) [39], and a simple Neural Network (NN).
Given this wide array of stacking models, if the errors are
uncorrelated and useful, either in a linear or non-linear way,
we should see a boost in performance.

6. Evaluation and Results

To evaluate the models and hypothesis of this work, we
use the same corpus used in [9], and use the JSAT library
for implementation [40]. This data is sub-divided into two
primary groups, with Group A collected in a manner consis-
tent with most works on malware detection, and Group B
samples provided by an anti-virus company . The data and
amounts are summarized in Table 1. The Group A benign
data is collected from various versions of Microsoft Win-
dows installations, and was found to be insufficient for train-
ing. The common bias of being from Microsoft resulted in
strong over-fitting, and likely impacts many prior works[9].
The Group B data is supposed to better represent the gen-
eral population of benign and malicious binaries found in
the wild. For this reason we only perform training on the
Group B data, but evaluate the models on all test sets. This
helps us better judge the generalization ability of the model.

Table 1. Breakdown of the number of malicious and benign
training and testing examples in each data group, along with
the sources from which they were collected. “Misc.” comprises
portablefreeware.com, Cygwin and MinGW.

training testing

Group A malicious benign malicious benign

Virus Share 175,875 — 43,967 —
Open Malware — — 81,733 —
MS Windows — 268,236 — 21,854
Misc. — 1,195 — —
total 175,875 269,431 125,700 21,854

Group B

Industry Partner 200,000 200,000 40,000 37,349
total 200,000 200,000 40,000 37,349

To evaluate the models discussed, we will use two met-
rics. The first metric is balanced accuracy [41], which down
weights errors of the more populous class so that the benign
and malicious samples have equal total weight toward the fi-
nal accuracy. This avoids comparative issues due to differing
levels of class imbalance in the test sets. We use the Area
Under the ROC Curve (AUC) [42] as the second metric. The
AUC considers the whole spectrum of false negative rates
for each possible false positive as the decision threshold is
varied.

During feature processing, many binaries could not be
disassembled. Many of these errors occurred due to the bi-
nary in question having no sections as being marked exe-
cutable. These binaries ended up being DLL files with trans-
lation strings for localized copies of Windows, or DLL files
containing icons or other data for applications. Some er-
rors can also occur due to the dissembler erring on challeng-
ing inputs. Any file with such an issue was removed from
both the training and testing datasets. Since balanced accu-
racy and AUC are not sensitive to class proportion, we can
meaningfully compare those metrics with the results from
our byte n-gram experiments. We note that we have confi-
dence in our extracted disassembly, as we are able to resolve
addresses across binaries to which function they are calling.
These would not resolve or make sensible disassembly if we
had an error in our disassembly process. We also removed
.Net files, as these files don’t contain machine readable code,
but rather are interpreted by the .Net or open-source Mono
runtime environments.

6.1. Byte 6-Gram Results

We use byte 6-grams for our evaluation as they were
found to perform best compares to 4-grams, and larger values
are beyond our computational capacity. We compare using
byte 6-grams on the entire file as the control, versus byte
6-grams extracted from one of only four sub-regions of the
binary. All five models were trained in the same manner

as outlined in Raff et al. [9], and the results can be found
in Table 2. This also includes the results of using Stacking
to combine the four different section types with various
different combiner models.

Table 2. Accuracy and AUC when using byte 6-grams. First four
rows are results using 6-grams from only one section of a PE
file, with the fifth row showing result from 6-gramming the whole
file. Best numbers in bold, second best in italics. Last three rows
show results when using Stacking (with different models for the
combiner) to combine models from all four feature sections.

Group A Group B Open Mal

PE-Section Acc (%) AUC (%) Acc (%) AUC (%) Acc (%)

PE Header 76.4 98.2 87.7 95.6 53.9
Data 69.6 94.9 84.4 92.9 52.7
Import 83.8 92.9 88.7 94.0 74.3
Code 80.5 94.6 88.1 95.2 60.7
Whole File 87.0 98.4 92.5 97.9 81.2

Stacking SVM 80.8 78.4 87.8 88.4 56.2
Stacking NN 83.1 81.4 89.0 89.8 60.7
Stacking RF 83.6 81.6 89.8 90.4 62.9

We note that in all cases the 6-grams of the entire binary
performed best in both accuracy and AUC. For the second
best model, the PE-Header was best when using the AUC
metric, and the Import section best when considering accu-
racy. While it may seem unusual for these metrics to differ,
this is not an uncommon scenario [43]. The best sub-region
for 6-grams region was generally 3 to 5 percentage points be-
hind that of using the whole file. We also note that the near
50% accuracies for Open Malware are not indicative of the
model randomly guessing, as the Open Malware set contains
only malware. It is likely those models are biased towards
declaring a binary as benign, and so would get considerably
higher accuracy rates if there were benign files to include
with the Open Malware files. This is confirmed by looking at
the precision on other datasets. For example, the PE-Header
model had a precision of 99.7% and recall of 72.8%.

Regarding the hypothesis that byte n-grams only learn
from the import and header sections, our evidence argues
against this hypothesis . The 6-gram models were able to
learn reasonable models from all four section types, though
the models from the Import and PE-Header were the ones
that performed best. That these two sections would perform
best is not unreasonable, as the lower entropy content of
these regions means that an n-gram found in the training set
is more likely to be found in the testing set.

What is more interesting is that the Stacking models,
which combine the predictions of each of the four section-
based models into a final prediction, generally perform worse
than models built on only the import and PE-Header sections.
Due to how we portioned each binary into the four sections,
the entirety of information available to the Stacking model
and a byte-gram model trained on the entire binary should

be equivalent. Theoretically, the Stacking model has an
advantage in intrinsic information about region type from
the constituent ensemble members.

The decrease in test accuracy from ensembling suggests
that the predictions of the models are highly correlated, as
we would expect performance to increase if the predictions
were uncorrelated. Differences in prediction output (and
confidence) then act only as a noise in the decision process,
rather than as signal that helps improve accuracy. We suspect
that this means the 6-grams from the code section of a binary
are learning the same kind of information that is contained
within the Import and Header sections of the binary. This in-
formation leakage could potentially be assembly instructions
or operands that are correlated with particular functions or
settings that may be found in those sections, respectively.

6.2. Assembly N-Gram Results

Given that we have evidence that byte n-grams can learn
from the code sections of a binary, we wish to compare
and understand the performance differences in what byte n-
grams from code learn and what n-gramming of the disas-
sembled code sections. We evaluate the three assembly n-
gram strategies discussed in section 4 on the same datasets,
using Group B for training. We emphasize that an assembly
n-gram does not correlate well with a byte n-gram in terms
of how much information is captured in a single features. A
single assembly instruction can range in size from one byte
to an extreme of 15 bytes, and so we do not concern our-
selves with trying to compare bytes vs assembly based on
the value of n. For each assembly n-gram type, we evalu-
ate up to and including the largest value of n that we could
manage in terms of memory on our workstation2.

Table 3. Balanced Accuracy and AUC for each test set, with models
trained on Group B. Using assembly n-grams of varying types.

Assembly-gram Group A Group B Open Mal

Type n Acc (%) AUC (%) Acc (%) AUC (%) Acc (%)

IFR 1 67.6 44.0 76.5 86.8 30.0
2 67.9 42.6 78.1 88.5 35.7

IPT

1 64.0 37.8 69.0 78.6 31.6
2 68.1 44.2 76.8 87.3 36.6
3 67.1 41.1 76.8 87.8 34.6
4 64.8 36.0 76.3 87.9 20.9

OI

1 61.6 33.3 64.3 70.3 30.8
2 65.0 38.4 73.6 85.4 26.5
3 66.7 40.6 77.8 88.6 28.7
4 65.5 37.5 77.6 88.3 24.6
5 64.7 35.9 76.1 87.2 21.5
6 64.0 34.2 75.5 87.3 19.2

The results for all assembly grams are given in Table 3.
The most striking result of these accuracy numbers is a dra-

2The workstation used for this experiment has 128GB of RAM

matic drop in performance compared to the byte 6-grams.
We also observe considerable overfitting when using the as-
sembly features, where the Group B test set performance is
reasonable (yet still lower than the byte grams), and drops
in accuracy and especially AUC when evaluated against the
other test sets. Our expectation would have been that assem-
bly grams would perform equal to or better than byte grams
of assembly, as the disassembled version is a higher level
representation of the data. Assembly-grams obtaining an
AUC lower than 50% (which would be the threshold of ran-
dom guessing), combined with the behavior of marking most
binaries as benign, indicates the assembly model trained on
Group B has no actual generalization to the other datasets.

Given this surprising result, we hypothesize a number of
ways in which discriminatory information may have been
lost for assembly-grams compared to byte-grams. These
stem from differences in assumption between performing
byte n-gramming and assembly n-gramming.

First we note, as discussed in subsection 4.1, that different
byte op-codes get mapped to the same higher level assembly
instruction when performing the disassembly process. It is
possible that the specific version of an instruction is in fact
discriminative, and is thus lost when using the assembly
grams. We will test this first hypothesis in the following
section.

Second, we observe that byte n-grams may start and end
in the middle of an assembly instruction, where as an assem-
bly n-grams will cover exactly n assembly instructions. This
gives byte n-grams an odd form of flexibility and specificity.
A byte-gram could start at one instruction, and reach into
only the op-code of the next instruction (touching some or
none of the operands). Or a byte n-gram could start in the
middle of a instruction, considering the lower order bits of
the operands of one instruction and then whole or part of the
preceding instruction.

6.3. Assembly-Grams with Disambiguation

Existing code infrastructure allows us to test the impor-
tance of opcode disambiguation with relative ease. The Cap-
stone Engine API we used for disassembly allows us to ob-
tain the first byte of the opcode for a particular instruction,
and so we can produce an “enhanced” disassembly, an ex-
ample of which can be seen in Figure 2. While the first byte
of the opcode may not be sufficient in all cases, it already
allows us to distinguish between multiple different versions
of the same instruction. We treat these as a new instruction
set, and repeat our assembly experiments on the same data.

We note that the disambiguation necessarily increases the
size of the feature space. This intrinsically makes learning
harder for the algorithm, as the impact of the curse of dimen-
sionality is only increasing. Thus any additional discrimi-
native information from disambiguation must be non-trivial

jmp_eb 0x4010eb
push_68 0x10024b78
lea_8d ecx, dword ptr [esp + 4]
call_ff dword ptr [MFC71.DLL:None]
push_53 ebx ; three different pushes
push_56 esi
push_57 edi
push_68 0x10024c05
lea_8d ecx, dword ptr [esp + 0x14]
call_ff dword ptr [MFC71.DLL:None]
lea_8d ecx, dword ptr [esp + 0x24]
mov_bb ebx, 1
push_51 ecx
mov_88 byte ptr [esp + 0x20], bl
call_e8 0x41f8ec
mov_8b edx, dword ptr [eax]

Figure 2. Example of disassembly with opcode disambiguation.
Note that it is now clear four different push instructions are being
called, two different call instructions, and three different mov
instructions.

in order to increase performance. This also increases com-
putational burden and memory use, which prevents us from
testing n-gram sizes as large as the preceding section.

The results can be seen in Table 4, where the disam-
biguated opcodes had an almost uniformly positive impact.
Most notably, the AUC on the Group A test data improved
dramatically, by at least 25 points in every case. A large
positive impact was also obtained on the Open Malware test
set, and in general for every statistic on every test set when
considering 1-grams. This indicates that the specific op-
code of the instruction, and not just the instruction type, con-
tains significant discriminative information for malware de-
tection. The disambiguation has improved assembly grams
from overfitting to the training data with almost zero gener-
alization ability, to being able to show moderate generaliza-
tion, but still subject to a non-trivial amount of overfitting.

7. Discussion

We have now tested byte n-grams by section type, to help
us better understand what byte n-grams have learned. In this
process we also tested assembly n-grams as a comparison
point to byte n-grams of the executable sections of a binary.
In doing so we have discovered a number of interesting
results not previously reported, as far as we are aware, for
both byte and assembly n-grams.

By byte n-gramming different sections of the binary, we
were able to show that they can learn discriminative informa-
tion from executable regions, which prior work hypothesized
was not possible [9]. However, a surprising result is that they
do not appear to be learning much about the code contents,
but rather, leaked information about imports, strings, and
any other lower entropy feature content that was discovered

Table 4. Balanced Accuracy and AUC for each test set, with models trained on Group B. Using assembly n-grams of varying types with
partial opcode disambiguation. Difference in scores from Table 3 in parentheses.

Assembly-gram Group A Group B Open Malware

n-gram type n Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%)

IFR 1 65.5 (+2.1) 69.2 (+25.2) 78.1 (+01.6) 86.4 (−00.4) 48.4 (+18.4)
2 69.8 (+1.9) 69.2 (+26.6) 78.8 (+00.7) 85.4 (−03.1) 44.7 (+09.0)

IPT
1 66.1 (+2.1) 73.7 (+35.9) 78.1 (+09.1) 88.4 (+09.8) 46.9 (+15.3)
2 70.8 (+2.7) 73.7 (+29.5) 80.4 (+03.6) 90.9 (+03.6) 42.9 (+06.3)
3 66.0 (−1.1) 66.9 (+25.8) 79.6 (+02.8) 90.4 (+02.6) 31.1 (−03.5)

OI

1 61.9 (+0.3) 69.4 (+36.1) 74.4 (+10.1) 84.5 (+14.2) 46.1 (+15.3)
2 69.7 (+4.7) 72.9 (+34.5) 76.6 (+03.0) 89.9 (+04.5) 43.8 (+17.3)
3 65.8 (−0.9) 68.3 (+27.7) 80.1 (+02.3) 91.3 (+02.7) 39.2 (+10.5)
4 64.9 (−0.6) 63.5 (+26.0) 77.6 (+00.0) 89.2 (+00.9) 26.9 (+02.3)

previously. We can draw evidence for this conclusion from
the lack of improved accuracy (and in-fact, degraded accu-
racy), when creating an ensemble of classification models.
If the information content used was different, errors should
be uncorrelated with byte n-grams from other regions, and
thus result in an improved model. In future work we hope
to test and better understand the correlations between differ-
ent types of feature information. One hypothesis as to how
this information may be leaked, is that certain imports are
strongly correlated with certain code patterns that get reused.
This may not be broadly informative about higher level infor-
mation such as malware author or source language, but are
correlated enough with the imports to allow use as a proxy
for the import itself.

Ultimately, it seems that byte n-grams are robust in their
ability to learn, but weak in what types of information they
are able to learn. That is to say, our results seem to con-
firm that byte n-grams are beholden to using certain types of
low entropy information that can already be more easily ex-
tracted from the imports and PE-header sections of a binary.
But regardless of where byte n-grams are applied, if such in-
formation exists or is leaked from other features, it appears
byte n-grams will be able to find, extract, and use that infor-
mation (though with potentially reduced effectiveness).

Somewhat more surprising, and not part of the original
goal of this work, was what was learned about the effective-
ness of assembly n-grams. It appears that assembly-grams,
at least when obtained from static analysis, are uniformly
less effective then byte n-grams. This is due to significant
overfitting to the Group B data distribution, with a failure
to generalize well to the other test sets. We have obtained
significantly improved results by incorporating opcode dis-
ambiguation, a strategy which we are not aware of any prior
works using for malware detection. Even with our improved
disambiguated instructions, their performance still lags that
of byte n-grams on the executable sections of a binary.

This result is counter to our intuition, as we would believe

disassembly to be raising the feature representation up to a
higher level, and thus making the job of the learning algo-
rithm easier. Yet our disambiguation results clearly indicate
that this may be inadvertently hiding important discrimina-
tive information. It is also possible that the higher level rep-
resentation afforded by assembly grams is in some way en-
abling greater overfitting to the original data. If so, this could
indicate a bias in the Group B data that is highly specific.

As discussed in subsection 6.1, byte n-grams also have
the unique property in that they do not care about instruc-
tion alignment. It is thus common to have a byte n-gram that
starts in one instructions, and ends in another. It is possi-
ble that this accounts for the remainder of the performance
gap between byte and assembly n-grams, and we hope to ex-
plore this in future work. Given that a byte 6-gram can be
representing less information than an assembly 1-gram, we
suspect that this scenario is a significant component of byte
n-gram’s learning ability when forced to learn from only the
code section of a binary.

Our results are also impacted by the existence of files that
could not be disassembled, has happened before [5]. There
may also be files with varying portions of erroneous disas-
sembly, as disassembly of malware is not trivial. The diffi-
culties and potential obfuscations that can prevent accurate
disassembly is recognized as a challenging problem [44]–
[48]. Others have noted there are different methods to per-
forming disassembly that may produce differing results [19],
with no one method being necessarily “better” than another.
It seems clear from our work that a more thorough investi-
gation of assembly n-grams is warranted, including use of
different disassemblers, using disassembly obtained from
dynamic analysis (which was not studied in this work), fig-
uring out the best method for handling failure cases, and col-
lective impacts these situations have on malware detection.

It would also be good to further evaluate assembly n-
grams in the context of malware family classification. While
some have used assembly-grams successfully for this task

before [15], [49], a more thorough investigation is warranted.
In particular, we hypothesize that assembly-grams may be
more effective for family classification then for malware de-
tection. We come to this theory by noting that the Group
B test accuracies, which are from the same training distri-
bution, provide reasonable performance. If assembly fea-
tures processes greater specificity, this may be advantageous
in family identification, where the classification labels are
intrinsically more specific than the broader benign vs mali-
cious task we have evaluated.

8. Conclusions

Inspired by recent work that questioned the effectiveness
of byte n-grams, we have delved further into understanding
what types of information they can learn from Microsoft ex-
ecutable binaries. In doing so we make two unexpected con-
clusions. First, that byte n-grams can learn from higher en-
tropy regions, such as the code section, of a binary — though
it may not be learning much information beyond than what
is found in the PE-Header and Import sections. Second, that
assembly n-grams do not appear to generalize to new data,
performing worse than byte n-grams learned from the code
regions of a binary. Further, that the standard approach to
creating assembly-grams is throwing away useful discrimina-
tive information. Combined, these results indicate that byte-
grams have more utility than given credit for, and assembly-
grams somewhat less.

References

[1] S. J. Stolfo, K. Wang, and W.-J. Li, “Towards Stealthy Mal-
ware Detection,” in Malware Detection, 2007, pp. 231–249.

[2] J. Z. Kolter and M. A. Maloof, “Learning to Detect and
Classify Malicious Executables in the Wild,” Journal of
Machine Learning Research, vol. 7, pp. 2721–2744, 2006.

[3] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan,
“N-gram-based detection of new malicious code,” in Pro-
ceedings of the 28th Annual International Computer Soft-
ware and Applications Conference, 2004. COMPSAC 2004.,
vol. 2, 2004, pp. 41–42.

[4] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laor-
den, and P. G. Bringas, “Idea: Opcode-Sequence-Based Mal-
ware Detection,” in Engineering Secure Software and Sys-
tems: Second International Symposium, ESSoS 2010, Pisa,
Italy, February 3-4, 2010. Proceedings, 2010, pp. 35–43.

[5] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitel-
man, S. Dolev, and Y. Elovici, “Unknown Malcode Detec-
tion Using OPCODE Representation,” in Proceedings of the
1st European Conference on Intelligence and Security Infor-
matics, 2008, pp. 204–215.

[6] A. Walenstein, M. Venable, M. Hayes, C. Thompson, and A.
Lakhotia, “Exploiting similarity between variants to defeat
malware,” in Proc. BlackHat DC Conf, 2007.

[7] R. Perdisci, A. Lanzi, and W. Lee, “McBoost: Boosting Scal-
ability in Malware Collection and Analysis Using Statistical
Classification of Executables,” in 2008 Annual Computer
Security Applications Conference (ACSAC), 2008, pp. 301–
310.

[8] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. v. Steen, “Prudent Practices for
Designing Malware Experiments: Status Quo and Outlook,”
in 2012 IEEE Symposium on Security and Privacy, 2012,
pp. 65–79.

[9] E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A.
Tracy, M. McLean, and C. Nicholas, “An investigation of
byte n-gram features for malware classification,” Journal of
Computer Virology and Hacking Techniques, 2016.

[10] M. Schultz, E. Eskin, F. Zadok, and S. Stolfo, “Data Mining
Methods for Detection of New Malicious Executables,” in
Proceedings 2001 IEEE Symposium on Security and Privacy.
S&P 2001, 2001, pp. 38–49.

[11] S. Jain and Y. K. Meena, “Computer Networks and Intelli-
gent Computing: 5th International Conference on Informa-
tion Processing, ICIP 2011, Bangalore, India, August 5-7,
2011. Proceedings,” in Computer Networks and Intelligent
Computing, 2011, ch. Byte Level, pp. 51–59.

[12] O. Henchiri and N. Japkowicz, “A Feature Selection and
Evaluation Scheme for Computer Virus Detection,” in Pro-
ceedings of the Sixth International Conference on Data Min-
ing, 2006, pp. 891–895.

[13] Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan, and C.
Glezer, “Applying Machine Learning Techniques for Detec-
tion of Malicious Code in Network Traffic,” in Proceedings
of the 30th Annual German Conference on Advances in Arti-
ficial Intelligence, 2007, pp. 44–50.

[14] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y.
Elovici, “Detecting unknown malicious code by applying
classification techniques on OpCode patterns,” Security In-
formatics, vol. 1, no. 1, pp. 1–22, 2012.

[15] N. Runwal, R. M. Low, and M. Stamp, “Opcode Graph
Similarity and Metamorphic Detection,” J. Comput. Virol.,
vol. 8, no. 1-2, pp. 37–52, 2012.

[16] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin,
and M. Stamp, “A comparison of static, dynamic, and hy-
brid analysis for malware detection,” Journal of Computer
Virology and Hacking Techniques, pp. 1–12, 2015.

[17] M. M. Masud, L. Khan, and B. Thuraisingham, “A scalable
multi-level feature extraction technique to detect malicious
executables,” Information Systems Frontiers, vol. 10, no. 1,
pp. 33–45, 2008.

[18] E. Menahem, A. Shabtai, L. Rokach, and Y. Elovici, “Im-
proving Malware Detection by Applying Multi-inducer En-
semble,” Comput. Stat. Data Anal., vol. 53, no. 4, pp. 1483–
1494, 2009.

[19] G. Yan, N. Brown, and D. Kong, “Exploring Discriminatory
Features for Automated Malware Classification,” in Pro-
ceedings of the 10th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment,
2013, pp. 41–61.

[20] J. Saxe and K. Berlin, “Deep neural network based malware
detection using two dimensional binary program features,”
in 2015 10th International Conference on Malicious and
Unwanted Software (MALWARE), 2015, pp. 11–20.

[21] W. Mazurczyk and L. Caviglione, “Information Hiding as
a Challenge for Malware Detection,” IEEE Security & Pri-
vacy, vol. 13, no. 2, pp. 89–93, 2015.

[22] G. Dahl, J. Stokes, L. Deng, and D. Yu, “Large-Scale Mal-
ware Classification Using Random Projections and Neural
Networks,” in Proceedings IEEE Conference on Acoustics,
Speech, and Signal Processing, 2013.

[23] N. Karampatziakis, J. W. Stokes, A. Thomas, and M. Mari-
nescu, “Using File Relationships in Malware Classification,”
in Proceedings of Conference on Detection of Intrusions and
Malware & Vulnerability Assessment, 2012.

[24] R. Rosenthal, “The file drawer problem and tolerance for
null results.,” Psychological Bulletin, vol. 86, no. 3, pp. 638–
641, 1979.

[25] D. L. Sackett, “Bias in analytic research,” Journal of Chronic
Diseases, vol. 32, no. 1-2, pp. 51–63, 1979.

[26] K. Hahn, “Robust static analysis of portable executable mal-
ware,” Master’s thesis, HTWK Leipzig, 2014, p. 134.

[27] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin, “MutantX-
S: Scalable Malware Clustering Based on Static Features,”
in Presented as part of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13), 2013, pp. 187–198.

[28] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“BYTEWEIGHT: Learning to Recognize Functions in Bi-
nary Code,” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 845–860.

[29] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laor-
den, and P. G. Bringas, “Idea: Opcode-sequence-based Mal-
ware Detection,” in Proceedings of the Second International
Conference on Engineering Secure Software and Systems,
2010, pp. 35–43.

[30] D. Bilar, “Opcodes As Predictor for Malware,” Int. J. Elec-
tron. Secur. Digit. Forensic, vol. 1, no. 2, pp. 156–168, 2007.

[31] M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S.
Mukkamala, “Malware Detection Using Assembly and API
Call Sequences,” J. Comput. Virol., vol. 7, no. 2, pp. 107–
119, 2011.

[32] L. Breiman, “Bagging predictors,” Machine Learning, vol.
24, no. 2, pp. 123–140, 1996.

[33] ——, “Arcing Classifiers,” The Annals of Statistics, vol. 26,
no. 3, pp. 801–824, 1998.

[34] H. Zou and T. Hastie, “Regularization and variable selection
via the elastic net,” Journal of the Royal Statistical Society,
Series B, vol. 67, no. 2, pp. 301–320, 2005.

[35] A. Y. Ng, “Feature selection, L1 vs. L2 regularization, and
rotational invariance,” Twenty-first international conference
on Machine learning - ICML ’04, p. 78, 2004.

[36] D. H. Wolpert, “Stacked generalization,” Neural networks,
vol. 5, pp. 241–259, 1992.

[37] T. Singh, F. Di Troia, V. A. Corrado, T. H. Austin, and M.
Stamp, “Support vector machines and malware detection,”
Journal of Computer Virology and Hacking Techniques,
pp. 1–10, 2015.

[38] L. Breiman, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.

[39] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and
S. Sundararajan, “A Dual Coordinate Descent Method for
Large-scale Linear SVM,” in Proceedings of the 25th inter-
national conference on Machine learning - ICML ’08, 2008,
pp. 408–415.

[40] E. Raff, “JSAT: Java Statistical Analysis Tool, a Library for
Machine Learning,” Journal of Machine Learning Research,
vol. 18, no. 23, pp. 1–5, 2017.

[41] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buh-
mann, “The Balanced Accuracy and Its Posterior Distribu-
tion,” in Proceedings of the 2010 20th International Confer-
ence on Pattern Recognition, 2010, pp. 3121–3124.

[42] A. P. Bradley, “The use of the area under the ROC curve
in the evaluation of machine learning algorithms,” Pattern
Recognition, vol. 30, no. 7, pp. 1145–1159, 1997.

[43] C. Cortes and M. Mohri, “AUC Optimization vs. Error Rate
Minimization,” in Advances in Neural Information Process-
ing Systems 16, 2004, pp. 313–320.

[44] C. Linn and S. Debray, “Obfuscation of executable code to
improve resistance to static disassembly,” in Proceedings of
the 10th ACM conference on Computer and communication
security - CCS ’03, 2003, p. 290.

[45] C. Collberg and C. Thomborson, “Watermarking, tamper-
proofing, and obfuscation - tools for software protection,”
IEEE Transactions on Software Engineering, vol. 28, no. 8,
pp. 735–746, 2002.

[46] C. Collberg, C. Thomborson, and D. Low, “A Taxonomy of
Obfuscating Transformations,” The University of Auckland,
Tech. Rep., 1997.

[47] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static
Disassembly of Obfuscated Binaries,” in Proceedings of the
13th Conference on USENIX Security Symposium - Volume
13, 2004, p. 18.

[48] N. Karampatziakis, “Static Analysis of Binary Executables
Using Structural SVMs,” in Proceedings of the 23rd Inter-
national Conference on Neural Information Processing Sys-
tems, 2010, pp. 1063–1071.

[49] Y. Ye, T. Li, Y. Chen, and Q. Jiang, “Automatic Malware
Categorization Using Cluster Ensemble,” in Proceedings
of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2010, pp. 95–104.

