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ABSTRACT
N-grams have been a common tool for information retrieval and
machine learning applications for decades. In nearly all previous
works, only a few values of n are tested, with n > 6 being exceed-
ingly rare. Larger values of n are not tested due to computational
burden or the fear of overfitting. In this work, we present a method
to find the top-k most frequent n-grams that is 60× faster for small
n, and can tackle large n ≥ 1024. Despite the unprecedented size
of n considered, we show how these features still have predictive
ability for malware classification tasks. More important, large n-
grams provide benefits in producing features that are interpretable
by malware analysis, and can be used to create general purpose
signatures compatible with industry standard tools like Yara. Fur-
thermore, the counts of common n-grams in a file may be added as
features to publicly available human-engineered features that rival
efficacy of professionally-developed features when used to train
gradient-boosted decision tree models on the EMBER dataset.
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1 INTRODUCTION
In this work, we are interested in the task of finding the top-k
most frequent n-grams in a large corpus. Given a corpus C of
documents, and an alphabet A, there are |A|n possible n-grams,
making the use of large n > 6 computationally infeasible for many
applications. Still, n-grams have been a bread-and-butter tool for
natural language processing and other related fields for decades,
thanks to their simplicity and usefulness. As such, significant work
has gone into engineering systems to work with n-grams [7, 24,
28]. This is also true for malware classification, where we wish to
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determine whether a file is benign or malicious (malware detection),
or to identify the specific family of a known malicious file (malware
family classification).

In particular, we are interested in selecting n-grams for large
values of n. This is motivated by the use of byte n-grams as features
for malware classification. There has long existed an intuitive need
for larger values of n in this space due to the nature of content
encoded in executable file formats. For example, if we consider
byte n-grams for Microsoft Windows Portable Executable (PE) files,
one x86 assembly code instruction could be up to 15 bytes long.
This would require us to consider at least 16-grams to capture this
one instruction in context. Early work determined large values like
n = 15 performed best [2], but this was only possible because of
the small corpus size (36.9 MB). Goldberg et al. [14] proposed using
20-grams since the average malware detection signature used in
1998 was 20 bytes in length. The seminal BitShred clustering work
proposed 16-byte grams, but needed a cluster of 64 machines to
scale past 60,000 files, and the use of feature hashing[44] meant
they did not have the original features [16]. As the size of malware
corpora has grown, the exponential cost in increasing the value of
n has forced researchers to consider small values of n and other
alternatives. Recent works that have looked at corpora with at
least 400,000 files have been constrained to 6-grams or less [34].
Considering that the Anti-Virus (AV) industry is making use of
datasets that range in size from ten million [21] to hundreds of
millions [41] of files, the methods that exist today simply can’t
scale to the magnitude of industry corpora, and old results using
hundreds of files are not sufficient to base decisions on.

In this work, we introduce the KiloGram technique for efficiently
finding the top-k most frequent n-grams for large values of k and n
with high probability under the assumption of a power-law distri-
bution to the n-grams. If L is the total number of observed n-grams,
or bytes, in the corpus, our algorithm will take only O(L) time and
O(B + k · n) memory. The parameter B is a budget factor to control
the accuracy of the method, and since n ≪ k ≪ B ≪ L, this mem-
ory cost is minimal. For our tests, for example, this B corresponds
to using ≈9 GB of RAM to extract frequent n-grams from 5 TB of
data. For n ∈ [2, 8], our approach is 60 times faster than previous
works, and runtime does not increase with n, allowing us to test
n = 1024 and beyond. This allows us to answer questions about
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the behavior of byte based n-grams in a more conclusive way than
prior work [46].

In § 2, we review related works that aim to increase the value of
n for malware classification. The proposed KiloGram algorithm will
be presented in § 3. We perform the first ever investigation of large
n ∈ [8, 1024] for malware classification in § 4. We found that n = 8
performs well and generalizes well over three years of concept
drift in malware. Ourr results show that the common assumption
that n should be larger in the malware analysis space do not hold
for larger modern corpora. Surprisingly, n = 1024 also results in
nontrivial malware classification accuracy. We demonstrate in § 5
that large n-grams are interpretable to malware analysts, can help
them automate laborious and error prone parts of their job, and
can be combined with lower-effort domain knowledge to rival (as
measured using the EMBER dataset) proprietary industry feature
extractors built from decades of expertise. Finally we will conclude
in § 6.

2 RELATEDWORK
N-grams have been used as features for malware analysis since
the first work in automating malware detection in 1995 [19], and
have consistently been used for malware classification systems ever
since [20, 34, 35, 42]. Except when using small datasets (hundreds of
MB or less), values of n > 8 are never tested in published literature
due to their computational burden. However an intrinsic concern
is that n-grams need to be larger. For example Ibrahim et al. [15]
noted that a byte 6-gram was too short to fully capture an observed
x86 instruction 2.4% of the time.

In attempts to increase the n-gram length, some have developed
techniques that attempt to coalesce multiple n-grams to a single
canonical base form. One example of this is n-perms [18], where a
sorted ordering is applied to every n-gram to map them to a single
canonical form (e.g., ACB, BCA, and CAB would all map to ABC).
This n-perm approach has been used for malware classification
with a value of n as large as 10 [43].

While our focus is on processing the raw bytes of a binary, n-
grams have been popular for assembly instructions as well. Similar
coalescing techniques have been necessary to do any work with
assembly due to computational constraints. Prior works have exam-
ined replacing all memory addresses, register references, and con-
stants with generic mem, reg, and const placeholders [22], though
it is more common to remove all instruction operands entirely [40].

While much work has gone into storing and processing known n-
grams efficiently [24], little has been been done to try to extend the
value of n itself in a time and memory efficient manner. The only
prior work we are aware of was performed by Nagao and Mori [26].
They considered obtaining n ∈ [1, 255] by cleverly converting the
most frequent n-gram calculation into a sorting problem, resulting
in O(L logL) complexity and O(L) space. While exact, these bounds
are worse than ours and necessitate slower out-of-core sorting
than the proposed method. Furthermore, the method is limited to
n ≤ 255, and only tested up to n = 10. Our method relies on certain
distributional assumptions to hold with high probability, but allows
us significant speed and practicality benefits with O(L) time and
O(B + k · n) memory.

3 KILOGRAMMING
Our goal is to find the top-k most frequent n-grams for large val-
ues of n. To do this, we build off of two prior works. First is the
hash-gram approach [33]. Hash-grams find the top-k most frequent
hashes of n-grams. They created a large table of size B = 231 − 19 to
store hashes, and simply ignored collisions. By using a rolling hash
function h(·) [12] , they were able to obtain orders-of-magnitude
speedup over normal n-gram tabulation, at the cost of losing infor-
mation about what n-grams are actually being used.

The hash-gram approach works under the common assumption
that n-grams follow a Zipfian (power law) distribution [47]. The
Zipfian distribution has probability mass function f (·) and cumula-
tive distribution function F (·) given by

f (x ;p, |A|) = x−p−1

H
(p+1)
|A |

(1) F (x ;p, |A|) = H
(p+1)
x

H
(p+1)
|A |

(2)

where H (p)z =
∑z
i=1 i

−p indicates the z’th harmonic number of the
p’th order, and x ∈ [1, 2, . . . , |A|].

Under the Zipfian-distributed assumption, it was shown that
hash-grams discover the correct top-k hashes with high probability
[33]. The Zipfian distribution is a surprisingly good fit to human
language and many other tasks [29], and as such has been a com-
mon and useful model for n-gram based features in natural lan-
guage processing[9], as well as for n-grams over bytes from binary
executables [34].

Naively, one would like to use an approach such as the Space-
Saving algorithm [23], which can return the top-k most frequent
items from a stream. At a high level, it works as a kind of ’rank’
based cache. If an item is in the Space-Saving data structure, its
rank is increased as well as an associated count. If an item is not
in the cache, the current item with the lowest rank is replaced, its
rank increased, and it’s error bound reset. Based on the current
error bounds, it can estimate top-k most frequent items in a stream,
and in some cases guarantee that they are the true top-k . Thanks
to clever design, updates to the Space-Saving data structure are
O(1). In this scenario, one would treat all possible n-grams as the
stream to process, and select the top-k after processing the stream1.
However this becomes computationally intractable as k increases,
and for a Zipfian distribution with p = 0, the Space-Saving algo-
rithm requires B = O

(
k2 log(|A|)

)
buckets to obtain the true top-k

n-grams, resulting in O
(
nk2 log(|A|)

)
memory use. When we con-

sider that the size of our alphabet is a function of the n-gram size
(i.e., |A| = 256n ), we get B = O

(
nk2

)
and a total memory use of

O
(
n2k2

)
, which is not tenable if we wish to consider larger k or

large n, let alone both as we do in this work. Prior works have
used k = 8, 000 as the largest k [8], which is insufficient for feature
selection of n-grams where we need to preserve k ≥ 100, 000.

To resolve these issues, we introduce the KiloGram algorithm.
This algorithm enables n-gram computation with n exceeding 1000

1Small scale tests on 80,000 files found that the computational overhead of the Space-
Saving structure is also significant. An attempt to find the top k = 10, 000 and n = 6
with B = 1, 000, 000 in this scenario took just as long as computing the exact n-grams
in the first place, and failed to return any of the true top-k due to difficulty is knowing
the correct budget size since the O notation hides constant factors.
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by extending the hash-gram approach with a second pass that se-
lectively leverages the Space-Saving algorithm. Its run-time com-
plexity is O(L), with two iterations over the corpus to process n-
grams and place them into a hash-table (first pass) or Space-Saving
data structure (second pass): either insertion is O(1) complexity.
The other operations in the proposed method are O(B) (e.g., quick-
select), and since B < L, we arrive at O(L) total complexity. For
memory, we require O(B)memory for the large tableT , and an addi-
tional O(k ·n)memory for the storage of exact n-grams in the space-
saving data structure, so that memory complexity is O(B + k · n).

Algorithm 1 KiloGramming
Require: Bucket size B, rolling hash function h(·), corpus of C

documents, and desired number of frequent hash-grams k , and
hashing stride s .

1: T← new integer array of size B
2: for all documents x ∈ C do ▷ O(L) for L total n-grams
3: for n-gram д ∈ x do
4: q′ ← h(д) mod B
5: if q′ mod s = 0 then ▷ Hashing-Stride check
6: T [q′] ← T [q′] + 1
7: Tk ← QuickSelect(T ,k)
8: S ← new Space Saving structure with BS buckets.
9: for all documents x ∈ C do ▷ Second pass over data
10: for n-gram д ∈ x do
11: q′ ← h(д) mod B
12: if q′ ∈ Tk then
13: Insert д into S
14: return top-k entries from S

The pseudo-code is given in Algorithm 1. On the first pass
through the dataset, we use the hash-gram approach of creating a
large table to find the top-k most frequent hashes, which under the
assumptions of a Zipfian distribution, will find the true top-k hashes
with high probability [33]. The hash-graming corresponds to lines
1–4 and line 6. Line 5 is an addition we will discuss soon in § 3.1.

Once we have the set of the top-k hashes, we create a new Space-
Saving data structure to help us keep track of the corresponding
top-k n-grams. We will perform a second pass over the data, and
use the top-k list of hashes as a white list for the Space-Saving
algorithm. In this way the majority of observed n-grams will not be
processed because they do not have one of the specified hash values,
and the Space-Saving structure allows us to filter out the collisions
from the true most-frequent n-grams. We require only O(k) buckets
in the Space Saving structure for all practical use cases, which we
prove in § 3.2, resulting in O(k · n) memory use for the second step.
This dramatically reduces the amount of memory required, and
runs orders of magnitude faster than attempting to use the Space-
Saving approach on the entire corpus. The second pass over the data
requires less time to run than the first pass because fewer memory
accesses are being performed (≥99.99% ofn-grams are non-frequent
[34]), and these memory accesses result in more cache hits (smaller
Space-Saving structure compared to large array T ). In testing, the
second pass can account for as little as 9.76% of the total runtime.

3.1 Hashing-Stride
We introduce the concept of a hashing-stride of size s to further
enhance the utility of the n-grams found so that they are useful for
creating features. The application of the hash-stride is simple. For
each n-gram д, we will compute its hash q = h(д). If q mod s , 0,
the n-gram is discarded. Thus, hash-striding is simply a determinis-
tic downsampling of input n-grams by a factor of s .

Hash-striding is important to reduce redundancy caused from the
sliding window effect across long common sequences. In particular,
for a ubiquitous sequence of length ℓ > n, the resulting top k
n-grams would be dominated by ℓ − n + 1 equally frequent and
essentially redundant sub-sequences. Including these n-grams in
the top k effectively reduces k by a factor of (ℓ − n).

A naive alternative to reduce the number of n-grams considered
for the top-k is to use a spatial stride z, where one steps by a
constant number of z grams through the input sequence. However,
if a frequent n-gram does not occur at intervals of exactly z, this
approach would fail to identify occurrences of the n-gram, resulting
in inaccurate counts or in the worst case, exclusion. By using a
hashing-stride of s , we reduce the total expected number of unique
n-grams to process by a factor of s . This is because for any particular
n-gramд, we will always count its occurrence regardless of its offset
within a file. This ensures that counts of n-grams are accurate.

From an implementation perspective, hashing-stride allows one
to perform a necessary first approximation to feature selection with-
out having to perform any kind of communication or coordination
between files, and without any additional significant computation.
This also means we are technically selecting the top-k n-grams from
|A′ |/s uniquen-grams, whereA′ is the set of observedn-grams from
the possible alphabet A (i.e., |A′ | ≤ min(L, |A|)). We will continue
to refer to this as just the “top-k” for brevity. For all experiments,
unless stated otherwise, we use a hash-stride of s = ⌈n/4⌉.

3.2 KiloGrams under the Zipfian Distribution
We now prove that Algorithm 1 preserves the correct top-k n-grams
when A follows a Zipfian distribution. In what follows, L ≥ |A′ |
represents the total number (including duplicates) of n-grams in
the corpus. In the proof (see § 3.2.1), it is assumed that the first
pass of the algorithm has obtained the true top-k hashes of the
top-k n-grams, which was previously proven to occur with a high
probability [33]. The proof continues by showing that given the
true top-k hashes and p ≥ 1, the expected number of colliding
non-frequent n-grams (including duplicates) is upper bounded by

6L/
(
Bπ 2

)
. (3)

Thus we may preserve the true top-k by having a sufficiently large
hash-table to disambiguate the frequent and non-frequent colli-
sions.

Since our implementation is in Java we use B = 231 − 19, the
largest prime array size allowed by Java. This value is also realistic
and requires only 8.6 GB of RAM, well within the capacity of a
modern laptop. With this, Algorithm 1 across one petabyte of n-
grams (L = 1015), we would expect at most 283,100 collisions. As
such, adding a constant of 300,000 to the size of the Space-Saving
structure S in Algorithm 1 should suffice for any application which
could practically run on a single computer. We include 3 · k as an
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alternative hedge against any situation where our empirical data
does not follow a power-law type distribution. Thus, in experiments,
we use BS = max(k+300000, 3 ·k) buckets. In all of our experiments,
the bound shown in Equation 3 was never violated.

The Space-Saving structure is unnecessary for the proof, but
included to ensure our approach will work should the true distri-
bution depart from a Zipfian distribution. The Space-Saving algo-
rithm also allows for a similar bound on the total number of buckets
needed. Following the proofs in [23], and noting that B > n · k for
all of our experiments, we reach a bound that BS = O(k) for all
possible Zipfian data streams.

3.2.1 Derivation of KiloGram Bound. For a uniform hash func-
tion, the expected number of collisions for any individual bucket
is L/B. There are k buckets of interest corresponding to the top-
k most frequent n-grams. If f (x ;p, |A|) is the Zipfian probability
distribution function with cumulative distribution F (·), the total
number of observed n-grams that do not collide with the top-k
is L · (1 − F (k ;p, |A|)). Then, the expected number of infrequent
n-grams that collide with the top-k n-grams is then equal to this
value times k/B:

k · L ·
©­­«1 −

H
(p+1)
k

H
(p+1)
|A |

ª®®¬ /B (4)

Equation 4 includes multiple occurrences of the same infrequent
n-gram, and so is pessimistic. If one makes the Space-Saving al-
gorithm large enough to handle all possible collisions, then the
true top-k n-grams are obtained with high probability. This is be-
cause the Space-Saving algorithm degrades to a simple hash-table
that counts everything exactly when the number of buckets in the
Space-Saving data structure is greater than or equal to the number
of unique items in the table.

From a theoretical perspective, using the Space-Saving algorithm
instead of a hash-table gives us added flexibility to deal with the rare
possibility of having more than the expected number of n-gram
collisions. More practically, we use the Space-Saving algorithm
because real data is not truly Zipfian distributed, and this gives
us a method of gracefully handling deviations from theoretical
expectations.

Considering the expected collisions in Equation 4, we can make
some practical simplifications given hardware constraints and data
assumptions. First, we pessimistically assume that p = 1, which is
the worst case for “interesting” power law distributions observed
in real data, which generally fall in the range of [1, 4] [11].

Next, we pessimistically assume that the alphabet A is infinite
in size. This technically degrades to the Zeta distribution, and is
pessimistic because it maximizes the amount of probability mass
that exists in the tail of the distribution (i.e., reduces the value of
F (k ; ,p, |A|)). Doing so, we obtain

lim
|A |→∞

− k · L · ©­«
H
(2)
k

H
(2)
|A |

− 1ª®¬ /B =
kL

(
π 2 − 6H (2)k

)
Bπ 2

which further simplifies to

6 · k · L ·ψ (1)(k + 1)
Bπ 2

where ψ (α )(β) is the PolyGamma function. This simplification is
significant, because ∀k ≥ 1,k−1 > ψ (1)(k+1), allowing us to replace
the PolyGamma function with a pessimistic upper bound. Further,
because lim

k→∞

(
1
k /ψ

(1)(k + 1)
)
= 1, this upper bound is tight. We

may further simplify by replacing the PolyGamma evaluation with
1/k , yielding Equation 3.

The bound in (3) states that the number of collisions is linear
in the total number of n-grams processed. This is not a surprising
result. More important is that we have a numerical upper bound that
can be employed to reduce the number of collisions dramatically.

Under a more pessimistic assumption that p < 1, the (3) bound
would not hold. However, a similar result can be obtained using the
Spave-Saving structure. For that algorithm, Zipfian data with p = 0
(the worst possible case) requires O(k2 log(|A|)) buckets. Since we
have already found the top-k colliding hashes based on a table of
size B, plugging this into the proof from [23] leads to a requirement
of O(B−1k2 log(|A|)) buckets. Noting that for processing n-grams,
|A| = 256n , this can be simplified to O(B−1nk2). We note that in
all experiments in this paper, B > n · k , which allows those terms
to cancel. This leaves the Kilogram approach with a total of O(k)
buckets to process any Zipfian dataset for all p ≥ 0, a considerable
improvement compared to O(nk2) buckets for the Space-Saving
algorithm alone.

4 CLASSIFICATION RESULTS
To test and evaluate the proposed KiloGram approach, we make
use of four datasets that include Windows PE files and Adobe
Portable Document Format (PDF) files. The datasets are summarized
in Table 1, with more detail in the appendix.

Table 1: All datasets used in our experiments, including size
of training and testing sets, and primary year the data is
from.

Dataset Year Train Test Storage Size
Industry EXE 2014-2015 2,011,786 400,000 5 TB
EMBER 2017 600,000 200,000 936 GB
Public PDF 2018 75,1829 83,780 464 GB
VirusShare-20C 2013-2018 160,000 40,000 141 GB

The “Industry EXE” dataset was provided to us, under a non-
disclosure agreement, by a third party AV company. The training set
contains 2 million Windows PE executables, evenly split between
benign and malicious [32], and a test-set of 400,000 binaries, also
evenly split[34].

The files from which the EMBER dataset [4] were created can
be obtained from VirusTotal [1]. EMBER has an even split between
benign and malicious, and since it is 2-3 years newer than Industry
EXE, we can use it as an extreme test of generalization over time.
This is important since malware is known to exhibit concept drift
[17].
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Our “Public PDF” dataset was constructed from VirusShare for
PDF malware [36] (19% of the data) and using Common Crawl2 for
benign PDF files.

Our “VirusShare-20C” (or “VS-20C”) dataset was constructed
from VirusShare [36], using AVclass to identify 20 PE malware
families with exactly 10,000 total samples each [38, 39].

We use all four datasets in our evaluations throughout the paper,
and observe consistent results across each in terms of the nature of
larger n-gram sizes. For clarity, we consider each dataset in turn
to highlight results and behavior across the four sets. Following
[34], we use Elastic-Net regularized logistic regression [30, 45, 48]
to train predictive models from the byte n-grams. Using the elastic
net regularizer of ∥w ∥1 + 0.5∥w ∥22 provides an important feature
selection as part of the model training process, as the ∥w ∥1 term
will shrink insignificant features to 0, and provides empirical and
theoretical robustness to high-dimensional problems with noisy
and irrelevant features [27]. To parllelize the Kilo-Gram algorithm,
we use the approach specified in [31] for lines 1-6, and naive paral-
lelization of the Space-Saving algorithm using the approach of [8]
to merge Space-Saving data structures for lines 8-13. QuickSelect is
run as a single thread.

For all datasets we use balanced accuracy [6], which re-weights
the test data as if there were an equal number of files in all test
sets. This is done to make the accuracy number comparisons more
meaningful across each dataset, where there may be slightly differ-
ent ratios of benign-to-malicious files. For our binary classification
problems, we will also use the Area Under the ROC Curve (AUC)
[5]. This metric is of particular interest in malware detection, since
one wishes to select a threshold that corresponds to low false posi-
tive rates, and AUC is the integral of true positive rate across all
false positive rates, without requiring one to select a threshold a
priori (in contrast to accuracy).

4.1 Hashing-Stride Improves Performance
First, we evaluate the inclusion of our hashing-stride approach, as
discussed in § 3.1. The expectation is that, as n becomes larger, the
performance of models built from the top-k most frequent features
will drop due to an increasing redundancy in the top-k list. Our
results back up this theoretical prediction, as shown in Figure 1.
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Figure 1: Balanced Accuracy results (y-axis) on the Public
PDF dataset as we increase then-gram size (x-axis, log-scale),
and alter the hashing stride s. Using a hashing-stride retains
more performance as n becomes larger.

2http://commoncrawl.org

Figure 1 shows that for small n ≤ 16, the absolute difference in
accuracy is less than 0.1 in all cases, and the hashing-strides are cor-
respondingly small values s ∈ [2, 4]. At n = 32 the performance gap
increase slightly, and by n = 64 the difference becomes significant.
Across all n ∈ [8, 1024], the use of a hashing-stride (s = ⌈n/4⌉) dom-
inates a naive approach without a hash-stride (s = 1). This result
appeared across all datasets, so for the remainder of the paper all
results are shown with the hashing-stride of s = ⌈n/4⌉. In extended
testing, we also investigated other ratios such as s = n/2 and s = n.
While all s = O(n) performed better than s = 1, the choice of n/4
seemed to consistently perform best among the options tested.

4.2 Computational Efficiency of KiloGrams
Computing the top-k most frequent n-grams has historically been
computationally demanding, restraining most to consider only n ≤
6 unless working with small datasets. We have shown, from a
theoretical view, that the KiloGram algorithm is O(L) complexity
and practically fixed memory cost at O(B + k · n). We now show
that this result is matched empirically.

We measure runtime on a server with four Xeon E7-8870 CPUs
for a total of 80 cores, 2 TB of RAM, and 40 TB of SSD storage.
Because of the hashing-stride, we find that the runtime tends to
decrease as n increases. For the VS-20C corpus, computing 8-grams
took 27 minutes whereas 1024-grams took only 12 minutes.

While our primary results come from the use of a powerful
server due to the need to train large logistic regression models, we
note that such high-end equipment is not necessary to perform
the n-gramming. The nature of the KiloGram algorithm means
that any machine with ≈10 GB of RAM should have no difficulty in
performing the computation. To emphasize this, we re-ran the same
KiloGram code on a workstation with a 10 core Xeon E5-2650 at
2.30GHz, 128 GB of RAM, and a 4 TB SSD. It took only 41 minutes to
compute the 1024-grams on this machine. Thee KiloGram algorithm
can apparently run onmodest hardware thanks to its computational
and memory efficiency.

Even if one is interested in small values of n, the KiloGram
approach exhibits superior run-time complexity and can provide
dramatic speedups over naive approaches. On the largest corpus,
Industry EXE dataset (2M files), KiloGram took ≤ 12 hours of
computation for all values of n ≤ 1024. Mature code with three-
years of performance tuning required one month to compute 6-
grams in the classical way: a 60x speedup for Kilogram over this
baseline.

4.3 Investigating Large n
As we discussed in § 2, many have suggested the need for large n-
gram sizes in building models for malware classification. However,
after an extensive literature review, we found that no prior work
empirically evaluated large n-grams on a large modern dataset. We
present the first evaluation of large n-grams, and show in Table 2
the balanced accuracy and AUC across all four datasets. The last
“Ind-2-EMBER” columns show results applying a model trained
on Industry EXE to the EMBER test set, making a strong test for
durability against concept drift over three years.

Across each dataset, we found that predictive accuracy does not
increase beyond n = 8. Indeed, the maximal performance on all
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Table 2: Results as n increases, using hashing-stride.

Industry EXE EMBER Public PDF VS-20C Ind-2-EMBER
n Acc AUC Acc AUC Acc AUC Acc Acc AUC
8 98.2 99.8 99.2 99.9 98.9 99.7 95.2 97.6 99.7
12 97.5 99.7 98.9 99.9 98.7 99.7 93.8 97.4 99.4
16 96.7 99.5 98.6 99.8 98.7 99.6 92.3 95.9 98.9
24 96.4 99.4 97.9 99.7 98.6 99.6 88.1 95.5 98.4
32 96.0 99.3 97.1 99.4 98.2 99.6 85.2 93.9 97.9
64 94.9 99.1 96.3 99.2 92.0 99.3 87.4 92.9 96.8
128 94.0 98.7 93.6 97.8 92.8 99.0 79.4 88.9 94.9
256 92.6 98.0 90.3 95.6 91.3 98.5 76.5 86.6 91.9
512 92.2 96.8 78.7 84.8 86.5 96.8 71.7 71.9 69.9
1024 91.9 96.1 78.6 85.2 72.3 90.9 67.1 72.6 72.6

metrics occurs at n = 8. With some variation, we found that the
performance in AUC degrades slowly for n ≤ 32 across all datasets,
but accuracy sometimes degrades faster. For example, the gap on
the Public PDF dataset for n = 8 and n = 32 is 0.7 points, but is a
more significant 10.0 points for the VS-20C corpus.

More surprising was that 1024-grams had any predictive utility
at all, let alone reaching 90%+ accuracy or AUC across many of
our datasets. Our intuition was that n-grams for large n would be
extremely brittle, common accross only a few sample, and therefore
ineffective for generalizing to new files. This was not the case,
however, and suggests re-use (perhaps in the form of code, header
information, resources, or compiler fingerprints) in EXE and PDF
document formats that allow these n-grams to generalize. We also
see from the “Ind-2-EMBER” experiment that these n-grams can
generalize across years of concept drift. At n = 8, a small loss of 0.6
points occurs. As n gets larger, the performance after three years
drops faster, indicating that after n ≥ 128, they lose significant
robustness to concept drift.

Given these results, we expect that as the size of n increases, the
features may begin to correspond to ever more specific indicators
of benign or malicious intent. For example, use of the Windows API
function “GetProcAddress” is a common indicator of maliciousness
across many Windows PE malware samples and can be detected
with n ≤ 6 [34], but this indicator alone is not enough to detect ma-
licious files since there are many benign use cases for this function.
As n becomes larger, we expect to see features that instead address
sub-populations of malware, rather than the population at large.

In Figure 2, we plot the balanced accuracy as a function of the
number of non-zero (NNZ) weights in the learned Elastic-Net regu-
larized logistic regression model, where fewer non-zero features
corresponds to a larger regularization penalty λ. Here we see that
for small n, there is a smooth and continuous increase in accuracy
as more features are selected along the regularization path. As n
increases, the behavior transitions to an initial rise in accuracy,
followed by a plateau once a minimum number of features are ob-
tained. The start of this plateau occurs earlier and the initial slope
larger as n becomes larger.

This behavior is intuitive, and corresponds with our expecta-
tion that the specificity of n-grams will increase with their size. For
small values, a large number of n-grams are necessary to cover a
wide range of smaller components that reflect the work and actions
of larger features. At larger values of n, the model quickly selects
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Figure 2: Balanced Accuracy results (y-axis) on the Indus-
try EXE dataset as the number of non-zero weights (x-axis)
learned by the logistic regression model increases.

all “useful” features. We believe this is because it becomes easier
to delineate the predictive subset due to feature occurrences clus-
tering around increasingly specific subsets of the population. Once
a sub-population is well separated, additional features have little
value unless they can “carve off” a different sub-population, and so
performance plateaus. A unique benefit of larger n-grams is their
increased interpretability, which allows us to provide additional
evidence to this interpretation of our results in § 5.

5 FEATURE ANALYSIS
The previous sections described how KiloGrams are computed, and
how they perform as features in a machine learning algorithm. For
malware classification we find large KiloGrams have considerably
more value in their application to analyst work-flow and integration
into larger systems. In this section we will describe how malware
analysts can use larger n-gram features in the course of their inves-
tigations, how they can be used in current signature based tools
like Yara, and how they can be integrated with domain knowledge
features to build a more powerful malware classification system. In
going through a number of n-gram features, both experienced and
junior analysts determined that it usually took a few minutes to
understand what a single feature meant or represented, with some
features taking longer.

5.1 Analyzing Individual Features
In a machine learning context, there are many features that could be
pulled from binary files for use in classification, such as information
from the PE header, printable strings, or (in our case) raw byte
sequences. Malware analysts, whose job usually involves dissecting
pieces of malware to write detection signatures or understand how
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they operate, work with many of these feature types in the course
of these investigations. From the point of view of these analysts,
a machine learning system based on small n-grams is opaque; it
takes many of these features to compile enough evidence to apply
a benign or malicious label, and since these n-grams may be only
a portion of a single x86 instruction as discussed earlier, they are
not very helpful in shedding light on why the algorithm chose the
label it did. When working with malware analysts in production,
the inability to understand what a particular feature means when it
is found in a binary has been a source of frustration, and impeded
adoption.

The sheer size of KiloGrams changes this dynamic and presents
a way to interpret features in what may otherwise be a black box.
The presence of a KiloGram provides an immediate indication of
where to start looking, and a large enough section of bytes to be
meaningful to an analyst. Features that contribute the most to
a malicious/benign decision can contain strings, embedded data
like images, or code (that may or may not require disassembly or
decompilation3, depending on file format). This can help analysts
reach a conclusion about a binary’s nature, which is important
since the average time to process a malicious file is 10 hours [25].
The ability to understand what the features mean is also important
to build trust so that developed solutions will be adopted and used.
Below we will provide some examples of the interpretability of
features found by malware analysts at different n-gram sizes.

5.1.1 EMBER Examples with 64-grams. In Figure 3, we see the
disassembly of a code snippet discovered by a 64-gram that occurred
in 8% of the EMBER dataset. Upon inspection this code assembles
the string “VirtualAlloc”. This is then later used to obtain the “Get-
ProcAddr” function in an obfuscated manner, so that the binary
can then load other libraries at runtime. This is a technique to ob-
fuscate the true intentions of the binary from malware analysts,
and is considered a strong indicator of maliciousness.

push eax #50
call DWORD PTR [ebp-0xcc] #ff9534ffffff
mov DWORD PTR [ebp-0x20], eax #8945e0
mov DWORD PTR [ebp-0xa4], 0x74726956 #c7855cffffff56697274
mov DWORD PTR [ebp-0xa0], 0x416c617f #c78560ffffff75616c41
mov DWORD PTR [ebp-0x9c], 0x636f6c6c #c78564ffffff6c6c6f63
and DWORD PTR [ebp-0x98], 0x #83a568ffffff00
lea eax, [ebp-0xa4] #8d855cffffff
push eax #50
push DWORD PTR [ebp+0xe] #ff750e
xor bh,bh #30ff
xchg ebp,eax #95
cmp bh,bh #95
.byte 0xff #ff

Figure 3: Example of a disassembled 64-gram feature found
in the EMBER dataset. The hex values of the raw bytes are
shown in comments for each line of assembly.

A considerable number of 64-grams contained sub-strings of
registry keys. In the EMBER dataset, 10% of malware was found to
have HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Cur
3Disassembly is the process of converting raw bytes into the low-level assembly
language they represent, while decompilation converts assembly instructions into a
higher-level language like C.

rentVersion\Policies\Explorer, which may be used to hijack
the explorer process. Another 12% contained HKEY_LOCAL_MACH
INE\Software\Microsoft\Windows\CurrentVersion\Run for
securing persistence for the malware.

One 64-gram triggered on the image icon shown in Figure 8 in
§ A.2 of the Appendix. Several malware samples contained precisely
this icon in the resources section, causing it to become a predictive
feature. This is another example of a feature with an easily under-
stood nature, thanks to the large scale of 64-grams, which would
have been uninformative if broken up into standard n ≤ 6 grams.

5.1.2 PDF Example from 512-grams. For an example of a 512-
gram, Figure 4 is a fragment from our Public PDF dataset discovered
by simply looking through the extracted features. The scripting code
was identified as JavaScript, which is often used in PDF files, but
more frequently used (and obfuscated, as in this case) in malicious
PDF files. The long string in the middle also stood out; 0x41 is the
letter ’A’ in hexadecimal format, and long strings of this character
are often used by exploit writers to assist in crafting the correct
string to take advantage of a vulnerability.

ey=aba();ek=24;ek++;ef=6192;ef--;if(ey>=wf){ep=4810;if(ep!=null){ev ⌋
=3742;ev+=0.013}eq=0.03;eq--;ed=we;ea=0.017;if(ea==0.0161){er= ⌋
'tae'}ex=sub(wd,wu);ez=5544;ez++;ej=true;es=wy;eu=8;eu--;eb='' ⌋
;en=9;en++;eh='';eo=0.034;eo++;ei=6343;ei++;
if(ey&lt;f){el=8952;el--;eb=r;mt=6172;mt+=0.0101;mw=1834;mw-=7 ⌋
115;eh='4c20600f0517804a3c20600f0f63804aa3eb804a3020824a6e2f80 ⌋
4a41414141260000000000000000000000000000001239804a6420600f0004 ⌋
00004141414141414141';me=6;me++}else
if(ey&lt;h){mm=18;mm++;eb=u;mg=false;mc=[7,35,21,4wp>null){wv= ⌋
0.0082;wv++}wf+=2177;wq=0.0032;wq+=3755;wd=zoa('qXM7reN6',15); ⌋
wa=0.006;if(wa!=21){wr=0.014;wr++}wx=zoa('tCTF3OdREync',13);wz ⌋
=[40,24,32,8,48,0,16,56];wj=0.008;if(wj&lt;0){ws=null;ws+=12}w ⌋
u=18690;wb=0.007;if(wb!=13){wn=[0,16,8,24];wh=17;wh+=7832}wu-= ⌋
7706;wo=28;if(wo==8){wi=['fen','lag','het']}wl=22;if(wl&lt;437 ⌋
0)

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Figure 4: A 512-gram found in PDF dataset. This exam-
ple contains obfuscated JavaScript code to build an exploit
string targeting particular versions of PDF reader software.

The next step in analysis is to find and extract the entire piece
of embedded code. In this case a web search yielded the exploit
code in a public repository. The code was then manually deobfus-
cated which revealed its functionality. Two different versions of
an exploit string are built, depending on the software version (the
target is likely to be Adobe Acrobat, the most popular PDF reader,
but this was not confirmed). A successful exploit results in a visit
to http://phjqxagpgdw.com/nte/goldmn.asp; and a quick search re-
vealed a number of identified malicious domains with this naming
scheme.

5.2 Features as Signatures
As the value of n increases, the resulting features gain increased
specificity in the files they target. It also becomes less likely to
observe an exact n-byte sequence by chance. This inspired us to
explore how well some of these larger n-grams might serve as Yara
signatures for malware detection. Yara [3] is an industry standard
regular expression tool designed formalware analysis. Yara rules are
usually designed to have low false-positive rates, in the sense that
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Figure 5: The F1 score of Yara rules automatically generated
from theVirusShare-20C training data, and evaluated on the
test data. A different rule set is created for each family.

if a specimen causes a rule to match, the specimen is probably ma-
licious. Using KiloGrams this way may seem counter-intuitive: Our
n-grams make powerful features for machine learning algorithms,
which many believe will ultimately replace signature-based mal-
ware detectors. However, signature-based systems are still widely
used, and will likely have a large role to play in layered defensive
systems for the foreseeable future.

YarGen[37] is the only currently-maintained tool we know of
for automatically generating Yara signatures for Windows PE files.
YarGen uses a number of domain knowledge processing steps to
create a signature from several files. Where it is feasible, we use
YarGen as a comparison to our method.

For our approach, we will use the coefficients learned by logistic
regression to select the 4000 n-grams most indicative of the class
we are interested in. We then look at the false positive rate of each
individual n-gram (on the training data), and discard any with a
false-positive rate above 5%. If any two or more n-grams always
co-occur, we randomly select one of the n-grams and discard the
others. We then combine the remaining set to form a simple Yara
rule, which looks for the exact n-grams, and fires if any of the n-
grams occur. Normally a combination of sub-rules is necessary;
for example, YarGen usually only fires if 3 or more out of a list
of patterns match. However, the statistical improbability of any
individual KiloGram makes them independently robust detectors.
After creating a rule for many values of n, we select the rule with
the best F1 score on the training set.

5.2.1 Results on VirusShare-20C Dataset. First we used the mal-
ware family dataset described in § 4 to automatically create Yara
rules to identify specific families. This is a common and arduous
task normally done manually by a malware analyst. We trained one
family-vs-the rest for n ∈ [8, 1024], and found that no single value
of n was best for all families. For 9 out of 20 families, n = 1024 did
perform best, which is a trend counter to the use of KiloGrams as
purely predictive features in § 4. We compared the results of our
new approach to the existing YarGen in Figure 5, where we look
at the F1 score for each family. A Wilcoxon signed rank test [13]
shows that our KiloGram based approach is better, with p-value of
3.1 × 10−5.

These results should not be taken to mean that YarGen is inferior
to KiloGrams; YarGen is a tool that iterates over various features

(strings, byte opcodes, etc) to find the best predictive rules. In a
sense, KiloGrams represent a new class of features that tools such
as YarGen could incorporate to improve their detection rates. We
believe these results show that KiloGrams can be a valuable tool in
the creation of signatures for malware detection, and the combina-
tion of these large features with machine learning tools can help
automate the process of signature creation.

For a final test the Yara rules used for each family were run over
the EMBER benign test set, as having low false positives on benign
files is a critical feature. Note that no benign datasets were used
in the creation of these KiloGrams. The KiloGram based rules had
a median false-positive rate of 0.0065%. This is 24× better than
YarGen, which had a median false-positive rate of 0.1595%.

5.2.2 Results on Industry EXE Dataset. We repeated the same
experiments on our Industry EXE dataset, to create a generic “mal-
ware” signature. This is unprecedented in the standard use of Yara,
which is meant for identifying files of a specific nature. YarGen
failed to run on 2 million files in a timely fashion, so we are unable
to compare with any prior works in the goal of creating a generic
malware signature. The results when attempting to use different
values of n are shown in Table 3.

Table 3: Yara generation results on Industry EXE

n # of rules True Neg False Pos False Neg True Pos Precision Recall
32 25 36.643% 63.357% 15.742% 84.259% 57.08% 84.26%
64 23 81.554% 18.446% 56.791% 43.209% 70.08% 43.21%
128 22 98.599% 1.401% 78.44% 21.56% 93.90% 21.56%
256 4 100% 0% 95.034% 4.966% 100.00% 4.97%
512 31 99.987% 0.013% 78.777% 21.223% 99.94% 21.22%
1024 52 99.947% 0.054% 76.68% 23.32% 99.77% 23.32%
2048 35 99.989% 0.012% 78.392% 21.609% 99.95% 21.61%
4096 84 99.992% 0.009% 89.79% 10.21% 99.92% 10.21%
8192 145 99.684% 0.316% 89.61% 10.39% 97.05% 10.39%

[256-4096] 206 99.938% 0.063% 74.958% 25.042% 99.75% 25.04%

We can see that any n ∈ [256, 4096] produces signatures with
low false positive rates, and surprisingly can catch up to 23% of
the malware in the test set. Naively combining all KiloGrams in
this range into one larger signature of 256 through 4096-grams
boosts the recall up to 1/4 of the test set malware. This produced
125 false positives, which we investigated with VirusTotal[1]. Of
these, 10 are now reported as OutBrowse malware; 45 behave very
similarly to each other and are almost certainly adware/spyware;
10 are unsigned (a huge red flag) versions of mmc.exe (Microsoft
Management Console) in various languages; and another 11 have
other malicious indicators (such as 1 or more malicious AV reports
or relationships with other malicious files). Only 49 of the 125
reported false positives display no evidence of being malware.

Further, we tested the Industry EXE generated signatures on the
EMBER test set, which is 2-3 years newer. This signature was still
able to catch 8.7% of the EMBER malware, with a false positive rate
of 0.0093% on the EMBER benign set. The ability of these signa-
tures to catch mislabeled data in our test set, and still generalize
to data three years later (despite the concept drift common in this
domain) increase our confidence in the usefulness of KiloGrams as
signatures.
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5.3 KiloGrams & Domain Knowledge
Based on the analysis in § 5.1 we find large n-grams represent
interesting and relevant features present in large sub-populations of
the malicious or benign binaries. This leads us to ask, can combing
large n-gram features with human-engineered features produce a
stronger model?
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Figure 6: AUC as a function of regularization parameter C
using Elastic-Net to forcemost coefficients to zero. Selecting
C = 10−1 gave 17,294 nonzero 128-gram features.

To assess this, the top 100,000 128-grams were extracted from the
EMBER training files. Using the Elastic-Net regularization path on
the training data (Figure 6), we selected the regularization parame-
ter,C , corresponding to the sparse subset that maximizes AUC. This
resulted in C = 10−1 and 17,294 nonzero 128-gram features. We
measured the lift provided by these 128-gram features by prepend-
ing the counts to two different domain knowledge feature sets: the
2,351 EMBER features crafted via domain knowledge, as well as a
production set of feature extractors designed by malware analysis
experts. These were compared to 128-grams alone, EMBER features
alone, and to proprietary features alone. We trained a gradient-
boosted decision tree model using xgboost on each of these feature
sets, with 200 boosting rounds, tree depths up to 9 levels, 50% col-
umn subsampling per tree, and a η = 0.29 learning rate [10]. ROC
curves on the validation features are shown in Figure 7.

Adding 128-grams improved AUC in all cases. EMBER features
alone achieved an AUC of 0.999597, and improved to 0.999718 when
augmented with 128-grams. The proprietary features result in a
slightly higher AUC at 0.999822, and further improved to 0.99985
when augmented with 128-grams.

For a production malware detector deployed as an anti-virus,
we care about the true positive (TPR) rate at n very low false-
positive rate (FPR). The zoomed inset in Figure 7 shows the TPR
at at FPR of 5:10000, which is reasonable for a production system.
At that rate, the TPR of EMBER with 128-grams is comparable
to the proprietary features alone, and then further outperformed
by proprietary features with prepended 128-gram counts. Also of
interest is the ROC curve for 128-grams alone, which exhibits a
peculiar jump in TPR near 2 × 10−3 FPR. This fits intuition that
KiloGrams are essentially “getting the easy ones” via the top k
n-grams spanning large subsets of malicious or benign PE files.
Feature combinations involving domain knowledge features cover
the remaining samples. Indeed, it required 20 boosting rounds for
a model trained on EMBER features to exceed 0.999 AUC on the
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Figure 7: KiloGrams augment the EMBER features to create
a model that rivals one built using proprietary features.

evaluation set, but only 15 boosting rounds when augmented with
KiloGrams.

While the EMBER dataset has been noted as a relatively “easy”
dataset [4], the results are a positive indicator of the utility of
large n-grams in conjunction with domain knowledge features.
Based on these promising results, more extensive work is being pre-
pared to test KiloGram augmented production features on industry-
representative datasets.

6 CONCLUSION
We have introduced the KiloGram algorithm for computing the top-
k most frequent n-grams. It is over 60x faster than prior approaches
for small n, and allows the new capability to select n ≥ 1024with no
increase in runtime. This allows us to explore previously unanswer-
able questions about large n-grams for malware classification. More
careful consideration about the nature of such large n-grams allows
us to address several issues in real-life malware analysis work. We
can create new features that are interpretable and increase analyst
trust, automate the creation of signatures with greater precision
and recall than was previously possible, and enhance the detection
rate of production anti-virus malware detectors.

Our belief is that the introduced ability to use n ≥ 16 grams
will lead to interesting new ways of using n-grams, and may be
applicable in natural language processing, network traffic analysis,
bioinformatics, and other fields. For malware detection, malware
authors trying to evade detection can no longer just obfuscate
strings or header fields. They must now consider any potential
binary pattern, such as compiler tags or code reuse, increasing the
effort for them to operate undetected.
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APPENDIX A SUPPLEMENTARY MATERIAL
A.1 Dataset Source Details
For completeness and reproducibility, we will review the nature of
our datasets in greater detail.

The “Industry EXE” dataset was provided by a third party AV
company. The training set contains approximately 2 million Win-
dows PE executables, 1,000,020 benign and 1,011,766 malicious, and
was used as the training data in [32]. A smaller corpus of 400,000
files from the same AV company as a large test set, which is also
evenly split and was used as the training data in[34]. All the exe-
cutable binaries in this corpus were first seen in the 2014-2015 time
frame. This company has asked to remain anonymous, but allowed
the use of their older data.

The EMBER corpus [4] normally provides the SHA256 hashes,
VirusTotal outputs, and domain knowledge features pre-extracted
for the public. The rawfiles of EMBERwere obtained fromVirusTotal[1].
This corpus has 600k training and 200k testing files which are evenly
split between benign and malicious. The training corpus files con-
tain a small subset from 2016, but the majority (and all test files) are
from 2017. The entirety of the EMBER test set has a first-observed
date newer than anything in the training data to make a better test
of generalization. As mentioned previously, the whole corpus is
on average 2-3 years newer than the Industry EXE dataset. It was
also collected and organized by a different company, with no col-
laboration. Using it as a cross-dataset generalization test is then
particularly powerful and informative to the longevity of extracted
features and models, as we minimize common source bias and gen-
eralization occurs after at least 2 years of separation. This is the
longest scale test of generalization across time we are aware of in
this domain.

Our PDF dataset was constructed from publicly available sources.
As such, this corpus may not represent benign and malicious PDF
populations in the same way as data collected by AV companies.
This is because the AV companies can observe a subset of real-
life benign and malicious traffic as they occur on real networks,
where our collection from public resources may reflect different
sub-populations.

For the malicious PDFs, we downloaded the VirusShare corpus
of malware [36], and selected all files in the corpus that were PDFs.
The VirusShare dataset is mostly Windows PE data, and so we are
only able to collect a total of 157,780 malicious files. For our benign
files, we used Common Crawl4, a non-profit effort to produce a
publicly available “crawl” of the internet similar to that used by
search engines. We randomly downloaded PDF files indexed in
the common crawl to create our benign files. The entire corpus is
about 19% malware. We are aware that assuming all files indexed by
common crawl are benign may not be absolutely true, but several
spot checks did not turn up any obviously malicious files. The
inspection of KiloGrams from § 5 also gives us confidence that this
is not a systematic problem, as we would otherwise be unlikely to
learn such useful and interpretable features from the PDF corpus if
contamination did occur.

Our last dataset, VirusShare-20C, is a malware family classifica-
tion dataset so that we could study a multi-class problem instead of

4http://commoncrawl.org

a binary one. This dataset was constructed by again using the public
VirusShare corpus [36]. To determine the malware families, we use
the VirusTotal [1] Anti-Virus labels provided by [39]. The VirusTo-
tal results include a label from several different Anti-Virus products.
Each AV product may use different naming schemes, have conflicts,
and sometimes different sets of AVs run against each file. We use
AVclass[38] to take the results from VirusTotal and produce a single
canonical family name and label for each file. This produced 184
families which each had at least 10,000 samples. 20 of these were
selected at random to create our dataset. For each family, 8,000 files
were used for the training set and 2,000 for the testing set.

A.2 Additional Figures

Figure 8: Frequently-used malware icon, found by inspect-
ing 64-gram features of Lasso.


